The website "epizodsspace.narod.ru." is not registered with uCoz.
If you are absolutely sure your website must be here,
please contact our Support Team.
If you were searching for something on the Internet and ended up here, try again:

About uCoz web-service

Community

Legal information

Спуск в отсутствие атмосферы
вернёмся к началу?

СПУСК В ОТСУТСТВИЕ АТМОСФЕРЫ

При современном состоянии космонавтики практически мягкую посадку в отсутствие атмосферы осуществляли пока только на Луну. Но принципиально такие спускаемые аппараты возможно доставлять на Меркурий, на спутники Марса, безатмосферные спутники других планет, а также на астероиды. Отметим, что, чем меньше масса тела Солнечной системы, тем с меньшими затратами топлива возможна посадка на его поверхность.

Спускаемые аппараты, предназначенные для мягкой посадки в отсутствие атмосферы, не покрывают теплозащитным слоем, а одевают, как правило, только в «шубу» экранно-вакуумной теплоизоляции для защиты от лучистой энергии Солнца и предохранения от глубокого охлаждения в космосе с теневой стороны аппарата. Парашют для данного типа спускаемого аппарата также не применим, поскольку купол нечем наполнить в вакууме. Поэтому для предотвращения удара о поверхность планеты применяют единственное средство — ракетный двигатель, способный погасить большую скорость до незначительных величин, порядка нескольких метров в секунду.

В этом случае посадка космического аппарата напоминает старт ракеты, только все происходит в обратном порядке. Двигатели, исторгающие из сопел пламя, не увеличивают скорости движения, а уменьшают ее, и с этой целью сопло двигателя обращено в сторону направления движения. Причем работа двигательной установки обеспечивает не только уменьшение скорости спускаемого аппарата до нулевой относительно цели, но и компенсирует силу притяжения тела Солнечной системы.

Тормозной двигатель должен снизить скорость аппарата до величины нескольких метров в секунду, причем окончание торможения должно совпасть с моментом приближения к поверхности планеты, иначе спускаемый аппарат в результате свободного падения снова разовьет большую скорость. Анализ различных схем торможения показал, что для первых экспериментов наиболее надежен вариант торможения при вертикальном снижении станции, позволяющий упростить систему посадки.

Теоретически эту задачу решить просто: по известным величинам силы притяжения планеты, силе тяги двигателя и скорости движения космического аппарата до торможения рассчитывают расстояние до поверхности планеты, при достижении которого космическим аппаратом нужно включить двигательную установку. Но практически определить, когда включать двигательную установку для торможения, не просто. Сколько километров осталось лететь до планеты — спросить не у кого, верстовых столбов в космосе не поставлено. Приходишь ставить на космический аппарат высотомер, проще говоря, радиолокатор, с помощью которого можно определять расстояние до поверхности планеты.

В соответствии с программой, рассчитанной заранее и заложенной в память космического аппарата, по достижении нужной высоты над поверхностью от высотомера приходит команда на включение двигательной установки. Однако до включения двигательной установки необходимо направить двигатель соплом вниз. Правда, понятий «верх» и «низ» в открытом космосе нет. Обычно для крупных небесных тел, таких, как звезды, планеты, «низ» связывается с их центром, но для малых тел, например астероидов, «низ» и «верх» определяются только из направления к центру притяжения.

Поэтому для посадки на тело, не имеющее атмосферы, надо сопло двигательной установки развернуть по направлению силы притяжения и включить установку в такой момент, чтобы при соприкосновении с поверхностью скорость была близка к нулевой. Развернуть космический аппарат по направлению силы притяжения можно, лишь определив положение космического аппарата относительно цели и направление его движения. Только тогда определяют величину необходимого импульса для проведения коррекции с целью правильного выполнения траектории спуска. Использование законов небесной механики и проведение необходимой коррекции траектории полета позволяют направить космический аппарат в центр видимого диска тела или в любую другую заданную точку посадки.

Разворот спускаемого аппарата в требуемом направлении для проведения торможения можно сделать с использованием системы ориентации. С помощью оптических датчиков этой системы определяют направление на Солнце или на опорную звезду. Решая тригонометрическую задачу, находят затем направление на центр планеты относительно направления на Солнце и направления на звезду. И, наконец, система управления разворачивает аппарат в требуемое положение.

Промежуток времени от включения двигателя до посадки рассчитывается заранее при проектировании космического аппарата, а расстояние до планеты определяется с помощью радиовысотомера. В зависимости от массы аппарата выбирается и величина силы тяги двигателя, и высота, на которой должно произойти его включение. Как и для спускаемых аппаратов, осуществляющих спуск в атмосфере, в данном случае спасается не весь космический аппарат, а только его часть. В момент включения двигательной установки лишние отсеки, т.е. уже не нужные на участке посадки, сбрасываются. Это блоки системы астроориентации, необходимые только для перелета с Земли до исследуемого тела, а также использованные химические источники тока и др. Для примера отметим, что у «Луны-9» масса этих сбрасываемых отсеков была соизмерима с массой автоматической лунной станции, опустившейся на Луну.

Все это делается с целью уменьшить количество топлива, необходимого для торможения космического аппарата. Но для контроля за движением космического аппарата надо периодически определять его скорость. Скорость по инерции замерить нельзя. Однако при включении двигателя космического аппарата появляется ускорение. В этом случае с помощью гироскопического интегратора можно измерить скорость движения путем интегрирования линейных ускорений. Правда, при этом узнается не истинная скорость космического аппарата, а только величина изменения скорости, возникающая от работы двигательной установки.

Для решения этой проблемы электронно-вычислительная машина, опрашивая высотомер, получает данные по высоте, а от интегратора получает значения приращения скорости в моменты, соответствующие определению расстояния до поверхности планеты высотомером. Затем электронный мозг по заложенной программе вырабатывает рекомендации на дросселирование или форсирование двигательной установки, если значения фактической скорости отличаются от расчетного значения, заложенного в память ЭВМ.

Посадка спускаемого аппарата на поверхность после окончания работы двигательной установки осуществляется падением с небольшой высоты под действием притяжения планеты. Амортизация удара о поверхность с целью снижения перегрузок на аппарат, как правило, осуществляется на всех спускаемых аппаратах с помощью трех или четырех опор, имеющих индивидуальные амортизаторы.

Лишь первые лунные аппараты «Луна-9» и «Луна-13» осуществляли посадку спускаемого аппарата иначе.

СПУСКАЕМЫЕ АППАРАТЫ СТАНЦИЙ
«ЛУНА-9», «ЛУНА-13»


До совершения посадки космического аппарата на лунную поверхность о ее свойствах были самые противоречивые сведения. По одним данным лунная поверхность представляла собой скалистые горные пустыни, по другим «моря» и материки Луны считались покрытыми толстым слоем пыли, в которой могли утонуть любые космические аппараты, осмелившиеся опуститься на ее поверхность.

Оригинальное решение для осуществления мягкой посадки на Луну предложил С.П. Королев. Вначале полет лунной станции необходимо было затормозить с помощью двигательной установки до скорости нескольких метров в секунду, а затем автоматическая лунная станция могла сбрасываться с двигательной установки, а на Луне оказывался спускаемый аппарат, упакованный в надутые сжатым газом мягкие и эластичные баллоны (рис. 6). При незначительной массе (около 100 кг) и сравнительно большой опорной поверхности баллонов (порядка 1,5 м2) удельное давление на грунт оказывается незначительным. Система посадки была разработана таким образом, что при любом грунте (будь то твердая скальная поверхность или рыхлый дисперсный грунт) обеспечивалось надежное прилунение станции.

Рис.6. Схема мягкой посадки станции «Луна-9»

Рис. 6. Схема мягкой посадки станции «Луна-9»

Спускаемым аппаратом для станции «Луна-9» фактически можно назвать автоматическую лунную станцию массой порядка 100 кг. Все остальное либо разрушалось, либо повреждалось при соприкосновении с поверхностью. Корпус спускаемого аппарата шарообразной формы диаметром около 50 см при закрытых лепестках принимал яйцевидную форму. Станция подлетела к Луне со скоростью 2,6 км/с. Система астроориентации разворачивала и фиксировала в определенном направлении станцию, таким образом, чтобы сопло двигательной установки было направлено в сторону лунной поверхности.

За 48 с до подлета, когда до Луны оставалось 75 км, по сигналу автономного высотомера от станции отделялись ставшие ненужными два отсека с аппаратурой и включалась1 тормозная двигательная установка. Работа двигательной установки контролировалась по программе, заложенной в памяти станции. Двигатель имел возможность регулирования тяги в относительно широком диапазоне.

1Более правильным ее названием было корректирующе-тормозная двигательная установка, так как на трассе перелета Земля — Луна она использовалась для проведения коррекции траектории полета к Луне.

С момента начала работы двигательной установки производился наддув двух эластичных баллонов, внутри которых находилась автоматическая лунная станция. Баллоны, зажав спускаемый аппарат, прочно соединились друг с другом, образуя большой упругий мяч. Вблизи лунной поверхности двигатель выключался и срез его сопла разворачивался и образовывался из плоской пружинной ленты трубчатый щуп. Соприкасаясь с поверхностью, щуп выдавал сигнал на отстрел спускаемого аппарата с баллонами. При этом практически разрывалась связь со станцией, а отделение происходило за счет силы упругости первоначально прижатых к опоре станции баллонов.

Поверхность, к которой прижимались баллоны, была несколько скошена в сторону с целью отделения автоматической лунной станции не по вертикали, чтобы падение произошло не на двигательную установку, а несколько в сторону. Мяч со станцией совершал несколько прыжков и останавливался. По сигналу, поступающему от программно-временного устройства, связи между баллонами рвались, и они, как два мяча, отскакивали от станции. Спускаемый аппарат с небольшой высоты мягко опускался на поверхность.

Благодаря яйцевидной форме и низкому положению центра масс аппарат мог принять заранее заданное положение. Через 4 мин после посадки программно-временное устройство выдавало команду на размыкание пирозамка, и лепестковые антенны раскрывались, освобождая одновременно и штыревые антенны. Лепестковые антенны на перелете играли роль приемно-передающих антенн, а после раскрытия переключались на работу в качестве передающих антенн, тогда как приемными служили штыревые антенны.

Внутри корпуса спускаемого аппарата была установлена жесткая рама с радиоаппаратурой, электронными программно-временными устройствами и приборами автоматики, телеметрической и научной аппаратурой. Сверху располагался телефотометр, позволявший видеть и передать на Землю панораму окружающей местности. Для бесперебойной работы аппаратуры в лунных условиях поддерживался необходимый температурный режим. Это достигалось устройством наружной теплоизоляции корпуса, а также работой системы терморегулирования. Последняя включала в себя бак с водой, пироклапан, клапан-испаритель, вентилятор и систему трубопроводов.

После посадки на Луну происходил подрыв пироклапана, включалась водяная испарительная система и начинал работать вентилятор, который обеспечивал передачу тепла от прибора к газу. Клапан-испаритель являлся чувствительным элементом системы, регулятором подачи воды и испарителем. Вода поступала к нему из бака под давлением и тем интенсивнее, чем выше была температура клапана. В клапане она испарялась и отнимала тепло от газа, продуваемого через клапан.

Автоматическая космическая станция «Луна-13» по конструкции и массе была близкой к станции «Луна-9», только на ней было установлено дополнительное научное оборудование, а также приборы для непосредственного изучения лунного грунта. Это были механический грунтомер-пенетрометр, позволявший определять механические свойства наружного слоя лунного вещества, и радиационный плотномер для определения плотности наружного слоя лунного грунта. Приборы были смонтированы на механизмах, обеспечивающих вынос приборов, закрепленных на наружном корпусе станции. Механизмы выноса позволяли устанавливать эти приборы на поверхности Луны на расстоянии до 1,5 м от автоматической лунной станции.

После полета станций «Луна-9» и «Луна-13» были получены основные данные о свойствах лунного грунта. С этого времени отпала необходимость конструировать спускаемые аппараты, способные осуществлять посадку и на скальные грунты и на поверхность, покрытую толстым слоем пыли. Все последующие спускаемые аппараты, предназначенные для посадки на Луну, уже использовали иные способы осуществления мягкой посадки. Как правило, стали применяться посадочные устройства с опорами в виде ног. Такое посадочное устройство способно выдерживать и амортизировать соударение станции с грунтом при вертикальных скоростях 6–8 м/с и при горизонтальной составляющей скорости до 3— 4 м/с и обеспечивать устойчивость при посадке на склоны крутизной 15–20°.

СПУСКАЕМЫЕ АППАРАТЫ СТАНЦИЙ ТИПА
«ЛУНА-16»


Спускаемый аппарат нового поколения советских лунников разрабатывался как посадочная ступень в виде самостоятельного ракетного блока многоцелевого назначения. Этот блок имел жидкостный ракетный двигатель, систему баков с компонентами топлива, приборные отсеки и амортизационные опоры для посадки на поверхность Луны. На посадочной ступени устанавливались также антенны бортового радиокомплекса и исполнительные органы системы ориентации.

В приборных отсеках размещались электронно-вычислительные и гироскопические приборы системы управления и стабилизации, электронные приборы ориентации, радиоприемники и передатчики бортовые радиоизмерительного комплекса, программно-временное устройство, автоматически управляющее работой всех систем и агрегатов, химические аккумуляторные батареи и преобразователи тока, элементы системы терморегулирования, автономные средства измерения высоты, горизонтальной и вертикальной составляющей скорости при посадке и другое оборудование, в том числе и научная аппаратура.

Двигательная установка посадочной ступени использовалась не только для проведения торможения при посадке, но и для осуществления коррекции орбиты при перелете от Земли до Луны. В составе двигательной установки были также два двигателя малой тяги, которые включались на заключительном этапе посадки. Основной двигатель посадочной ступени имел возможность многоразового запуска.

Посадка на Луну в отличие от первых спусков на лунную поверхность проводилась не непосредственно с перелетной траектории, а с предварительным выведением космического аппарата на орбиту искусственного спутника Луны. Путем проведения маневров, выполняемых с помощью двигательной установки, формировалась предпосадочная орбита, необходимая для создания оптимальных условий точной посадки в заданный район лунной поверхности.

Особенностью такой орбиты является небольшая высота орбиты в перицентре над поверхностью Луны — всего около 15 км. Перицентр в этом случае организуется над заданным районом посадки. Отметим, что такая высота обусловлена наличием на Луне гор высотой до 9 км, оставшееся расстояние 5–6 км как раз обеспечивало допустимые погрешности в формировании орбиты.

Перед включением двигательной установки для осуществления посадки проводились операции ориентирования и программного разворота станции, чтобы обеспечить движение станции соплом двигателя вперед. Протяженность трассы полета с включенным двигателем от точки схода с орбиты до места прилунения составляла 250 км. На всем участке снижения положение станции строго стабилизировалось. Высота и вертикальная скорость спуска находились под непрерывным контролем бортового доплеровского измерителя скорости и высотомера. Все операции при спуске осуществлялись автоматическими устройствами станции без вмешательства Земли.

По достижении заданных значений высоты над лунной поверхностью и вертикальных составляющих скорости двигатель выключился и повторно включился, а на высоте 20 м вместо него начинали работать двигатели малой тяги. Перед включением двигателя для осуществления торможения два отсека с опорожненными топливными баками (топливо использовалось при проведении коррекции и торможении у Луны для создания орбиты искусственного спутника Луны), а также с аппаратурой астронавигации и другими приборами, не задействованными для проведения посадки, сбрасывались, и на Луну опускалась облегченная посадочная ступень с полезным грузом (рис. 7). В качестве последнего использовалась у «Луны-16», «Луны-20» и «Луны-24» возвратная ракета Луна — Земля, а для «Луны-17» и «Луны-21» — самоходный аппарат «Луноход».

Рис.7. Спускаемый аппарат станции «Луна-16»

Рис. 7. Спускаемый аппарат станции «Луна-16»:
1 — антенна; 2 — грунтозаборное устройство; 3 — отсек системы управления; 4 — топливный бак; 5 — опора; 6 — двигатель

Посадочная ступень после выключения двигательной установки опускалась на поверхность. Удар о грунт смягчали четыре опоры с амортизаторами. Причем энергия удара расходовалась на растяжение металлических стержней, расположенных в стойках опор, и на смятие тарельчатых опор, изготовленных с сотовым заполнением.

СПУСКАЕМЫЙ АППАРАТ СТАНЦИИ «СЕРВЕЙЕР»

Программа «Сервейер» предназначалась для изучения характеристик лунного грунта и условий на лунной поверхности, чтобы обеспечить успешное выполнение программы «Аполлон». Конструктивно аппарат «Сервейер» состоит из каркаса, изготовленного из алюминиевых труб, к которому крепились три опоры посадочного устройства и мачта для установки батарей солнечных элементов и остронаправленной антенны. На каркасе располагались два герметичных контейнера с электронной аппаратурой, двигательная установка, телевизионная камера, навигационное и научное оборудование.

При стартовой массе «Сервейера» порядка 1 т на Луну опускался спускаемый аппарат массой около 280 кг после израсходования топлива и сброса части оборудования, не нужного при посадке,

Основной тормозной двигатель шаровой формы работал на твердом топливе. Двигатели малой тяги, установленные на аппарате, были жидкостными. В составе аппарата находились солнечный датчик и датчик опорной звезды Конопус, а также несколько радиолокаторов, служащих для определения скорости спуска и расстояния до лунной поверхности. Радиовысотомер давал сигнал на выключение тормозного двигателя. Другой высотомер с помощью бортовой вычислительной машины управлял двигателями малой тяги.

Посадочное устройство аппарата при старте находилось в сложенном состоянии и развертывалось только лишь после того, как аппарат выводился на траекторию полета к Луне. Опоры имели стойки с амортизаторами самолетного типа. К нижней части опор были шарнирно подвешены тарельчатые амортизаторы из алюминиевых сот. К нижней части каркаса аппарата были прикреплены амортизационные блоки из алюминиевых сот, предназначенные дли смягчения удара каркаса о грунт в момент прогиба основных опор.

СПУСКАЕМЫЙ АППАРАТ КОРАБЛЯ «АПОЛЛОН»

Спускаемый аппарат этого корабля был назван американскими специалистами лунной кабиной. Она предназначалась для доставки двух космонавтов с селеноцентрической орбиты на поверхность Луны, для обеспечения их пребывания на поверхности и доставки с поверхности Луны на селеноцентрическую орбиту. Лунная кабина состояла из посадочной и взлетной ступеней. При старте с Луны посадочная ступень оставалась на Луне. Лунная кабина представляла собой сложное инженерное сооружение, а котором размещались система жизнеобеспечения, система наведения и навигации, энергетическая установка, связное оборудование, бортовые двигатели и научное оборудование.

После отделения лунной кабины от корабля «Аполлон» и достижения расстояния между ними 18 м, лунная кабина разворачивалась для ее осмотра в целях поиска возможных повреждений. Затем на 32 с включался основной двигатель посадочной кабины, который переводил спускаемый аппарат на эллиптическую орбиту с высотой перицентра 15 км над лунной поверхностью. Спуск лунной кабины на поверхность Луны происходил в три этапа: торможение, выведение в район посадки и посадка.

По достижении перицентра включался двигатель посадочной ступени лунной кабины, который при работе на полной тяге создавал торможение продолжительностью 8 мин. За это время кабина проходила около 400 км и снижалась до высоты 2,6 км. До района посадки еще оставалось около 15 км. Здесь начинался этап выведения в район посадки, для этого лунная кабина разворачивалась с таким расчетом, чтобы космонавты могла видеть выбранный район. На этом этапе двигатель посадочной ступени работал на 60% от полной тяги и менее чем за 1,5 мин уменьшил скорость полета кабины со 137 до 15 м/с.

В конце этого этапа высота над поверхностью равнялась 150 м, а расстояние от места посадки составляло примерно 360 м. На заключительном этапе посадки управление полетом полностью осуществляли космонавты. Обеспечивалась ориентация лунной кабины, постепенное уменьшение тяги двигателя и вертикальный спуск с высоты 30 м. Минимальная длительность посадки равнялась 75 с, однако на практике она длилась дольше, так как требовалось время для осмотра района посадки и выбора более подходящего участка прилунения.

Для обеспечения мягкой посадки посадочная ступень снабжалась специальным шасси. При старте шасси находилось в сложенном виде, телескопические стойки были прижаты к корпусу посадочной ступени. Шасси разворачивалось только после перехода космонавтов в лунную кабину. К стойкам шасси на шарнире крепились тарельчатые опоры, изготовленные из алюминиевых сот. Для амортизации ударных нагрузок использовался сминаемый сотовый заполнитель из алюминиевого сплава, имевшийся в телескопических стойках посадочного шасси. Стойка способна была укорачиваться на 0,8 м.

Предусматривалось, что на высоте около 1 м космонавты выключат двигатель посадочной ступени, чтобы предотвратить перегрев днища спускаемого аппарата от истекающей струи, отраженной от грунта. Опасались также взрыва двигателя, если бы он в работающем состоянии коснулся грунта. Но на практике уже при первой посадке космонавт Н. Армстронг забыл выключить двигатель, но лунная кабина в момент касания с грунтом имела практически нулевую скорость. Двигатель был выключен от щупа, расположенного на стойке шасси.

Возвращение космонавтов с Луны осуществлялось с помощью взлетной ступени. Старт производился аналогично старту ракеты на Земле, только вместо стартового устройства здесь использовалась посадочная ступень. Взлетная ступень выходила на орбиту искусственного спутника Луны, а затем состыковалась с основным блоком корабля «Аполлон». После перехода из нее космонавтов и переноса оттуда необходимого оборудования и материалов она отстыковалась от основного блока. В дальнейшем взлетная ступень либо оставалась на селеноцентрической орбите, либо ее направляли на поверхность Луны.

далее
к началу
назад