The website "epizodsspace.narod.ru." is not registered with uCoz.
If you are absolutely sure your website must be here,
please contact our Support Team.
If you were searching for something on the Internet and ended up here, try again:

About uCoz web-service

Community

Legal information

ВИЛЛИ ЛЕЙ
вернёмся в начало?
ГЛАВА ОДИННАДЦАТАЯ

СПУТНИКИ ЗЕМЛИ


Когда в 1952—1954 годах я читал лекции по ракетному делу, мне почти всегда задавали множество вопросов о результатах новых работ и о перспективах на будущее. Мне всегда было ясно, что следующим шагом после подъема ракет на большую высоту, порядка одного земного радиуса, будет запуск ракеты в космическое пространство с таким расчетом, чтобы она не упала обратно на Землю.

Слушателей часто поражало это заявление, но между тем как раз в это время специалисты в области ракетной техники усиленно обсуждали возможные методы запуска ракеты за пределы земной атмосферы с тем, чтобы она оставалась там и двигалась по орбите вокруг Земли.

Я неоднократно утверждал, что не знаю никакой другой науки, развитие которой так точно соответствовало бы теоретическим предсказаниям, как исследования в области ракет. В хронологическом порядке—сначала Циолковский, а затем Годдард и Оберт установили, что скоростную ракету можно создать за счет использования жидких топлив. Годдард, Оберт и Пирке неоднократно указывали, что невоенное применение больших ракет с жидкостными двигателями будет заключаться прежде всего в исследовании верхних слоев атмосферы. Все специалисты ракетного дела соглашались с тем, что необходимая для этого скорость будет быстро достигнута при использовании принципа ступенчатости ракет. Еще в 30-х годах инженеры и ученые много говорили и спорили о метеорологических ракетах, ракетах дальнего действия, беспилотных ракетах для полета на Луну, о межпланетных кораблях и даже о пилотируемых космических станциях. Но так уж случилось, что вопрос о непилотируемом искусственном спутнике Земли не был при этом затронут никем. Вплоть до недавнего времени никто не думал о беспилотной ракете, двигающейся по орбите вокруг Земли.

Причина такого упущения заключалась в том, что спутник для сбора научной информации может быть действительно полезен только при наличии телеметрических приборов. А сама телеметрия стала развиваться всего лишь немногим более 20 лет тому назад и долгое время пребывала в зачаточном состоянии. Тем не менее когда 28 июля 1955 года Белый дом выступил с официальным сообщением о том, что США собираются произвести запуск искусственного спутника Земли, последний имел в теоретическом плане уже довольно обширную, хотя и непродолжительную историю.

Непосвященные люди прежде всего хотят знать, что удерживает спутник? Ответить на этот вопрос можно по-разному. Самый простой ответ дает рис. 56. Траектория ракеты, запущенной из точки А в точку В, представляет собой часть эллипса, один из фокусов которого совпадает с центром Земли. Этот эллипс как бы пересекается поверхностью Земли в точках А и В. Чем больше эллипс, тем дальше будут расположены эти точки друг от друга. Если же эллипс станет достаточно большим и охватит всю Землю, он превратится в орбиту, по которой ракета будет двигаться вокруг Земли.

Рис. 56. Замкнутая эллиптическая траектория полета (орбита) спутника Земли. Баллистическая ракета, движущаяся из точки А в точку В, фактически описывает часть эллипса, одним из фокусов которого является центр Земли. По мере увеличения эллипса участок траектории, «срезаемый» поверхностью Земли, становится все большим (сравни АВ и CD), пока наконец траектория не приобретает вид замкнутой орбиты ап

Есть и другое, так называемое «баллистическое», объяснение этого явления.

Взгляните теперь на рис. 57. На нем показана Земля с воображаемой горой таких колоссальных размеров, что ее пик выходит за пределы земной атмосферы. Представим себе далее, что на пике этой горы находится несколько орудий со стволами в строго горизонтальном положении и что начальная скорость снаряда орудия, из которого будет производиться первый выстрел, равна 400 м/сек. При выстреле снаряд, медленно снижаясь, полетит вниз и упадет на землю на некотором расстоянии от горы. Предположим, что у снаряда следующего воображаемого орудия начальная скорость 800 м/сек. Разумеется, что снаряд пролетит большее расстояние, но также упадет на землю. То же самое произойдет и со снарядом третьего орудия, имеющим начальную скорость 1600 м/сек.

Тот факт, что при большей начальной скорости снаряд летит дальше, сам по себе общеизвестен. Но почему так получается, знают немногие. А происходит это потому, что любой снаряд движется под действием двух сил: силы пороховых газов, создающих определенную начальную скорость, и силы земного притяжения. Если бы не действовала сила тяжести, то снаряд двигался бы по горизонтали, а при отсутствии начальной скорости снаряд просто упал бы отвесно на Землю. Но вследствие одновременного действия обеих сил снаряд движется вперед и вместе с тем падает вниз, то есть описывает кривую. Скорость падения одинакова при всех выстрелах, а начальная скорость может изменяться. При большой начальной скорости кривая будет пологой, а при малой — она будет крутой.

Рис. 57. «Баллистическая» теория

Если очень сильно увеличить начальную скорость снаряда, то на дальность его полета будет влиять еще один фактор, а именно кривая земной поверхности. При низкой начальной скорости, в результате которой снаряд летит не далее 16 км, действие этого фактора остается незаметным. Земная поверхность для такого снаряда фактически не имеет кривизны. Но когда кривизна траектории снаряда приближается к кривизне земной поверхности, влияние последней становится более заметным. Если же одна кривая будет столь же пологой, как и другая, то снаряд, снижаясь, никогда не упадет на Землю. Земная поверхность, если можно так выразиться, будет изгибаться вниз с такой же быстротой, с какой снаряд будет приближаться к ней под действием силы тяжести. Другими словами, снаряд будет падать не на Землю, а вокруг Земли.

Установлено, что для получения замкнутой круговой траектории у поверхности Земли необходима начальная скорость 7,9 км/сек. На большей высоте скорость движения по круговой орбите может быть несколько меньшей. Так, например, Луна имеет орбитальную скорость порядка всего лишь 1 км/сек.

Каждой из орбит, находящихся на разном удалении от Земли, соответствует определенный период обращения. Орбите, проходящей, скажем, на расстоянии 12 800 км от Земли, соответствует более длительный период обращения, чем орбите, удаленной от Земли на 800 км. Искусственный спутник Земли, вращающийся у самой ее поверхности со скоростью 7,9 км/сек, мог бы совершить полный оборот вокруг Земли за 83 минуты. Луне же для этого требуется целый месяц. Как показано ниже, между этими двумя пределами возможны орбиты с самыми различными характеристиками.

Характеристики круговых орбит
расстояние от Земли, км Период обращения, мин Орбитальная скорость, км/сек
557 96 7,8
756 105 7,1
1730 120 7,0
5150 210 5,8
6430 240 5,6
12400 420 4,7
35900 1440 (сутки) 3,1

Особый интерес представляет последняя орбита. Для полного оборота искусственного спутника по этой орбите необходимы ровно одни сутки, а если плоскость орбиты будет совпадать с плоскостью экватора, то спутник будет казаться неподвижным, занимая одно и то же положение в небе.

Чем дальше находится орбита спутника от земной поверхности, тем меньшей может быть его скорость, но тем больше потребуется топлива, чтобы выйти на нее с Земли. Более близкая орбита выгоднее с точки зрения общего расхода топлива, оптического сопровождения, телеметрии и т. п. Тем не менее ее нужно выбирать так, чтобы она лежала за пределами атмосферы; в противном случае сопротивление воздуха приведет к большим потерям энергии и спутник быстро потеряет высоту. Приближаясь к Земле по спиральной траектории, спутник в конце концов разобьется, если не сгорит при вхождении в более плотные слои атмосферы.
Рис. 58. Зависимость периода обращения от высоты орбиты. Цифры слева указывают периоды обращения (в часах), справа—скорость в м/сек; внизу даны расстояния в км.

Поэтому минимальная высота круговой орбиты спутника над земной поверхностью определяется расстоянием, на котором атмосфера может создать более или менее значительное лобовое сопротивление телу, движущемуся со скоростью 7,9 км/сек. В настоящее время вполне достаточной считается высота в 1000 км над уровнем моря, хотя, вероятно, удовлетворительной может быть и половина ее.

Неизвестно, кто первый подал мысль о беспилотном искусственном спутнике, после того как Оберт опубликовал в 1923 году свой проект пилотируемой космической станции. Возможно, что это сделал кто-то из группы, работавшей в Пенемюнде, а может быть,—кто-нибудь другой. Так, например, Дорнбергер в своей книге указывает, что при обсуждении будущих разработок в Пенемюнде было предложено для воздания почести первым путешественникам в космос помещать их набальзамированные тела в стеклянные шары, запускаемые по орбитам вокруг Земли.

Мне же кажется, что мысль о беспилотном спутнике приобрела конкретную форму в тот период, когда люди стали думать о ракетах с очень большой дальностью полета.

На втором Международном конгрессе по астронавтике, состоявшемся в Лондоне в сентябре 1951 года, большинство докладов было посвящено искусственным спутникам, но во всех этих докладах, за исключением одного, рассматривались главным образом вопросы, связанные с пилотируемыми космическими станциями. Исключение составлял доклад членов Британского межпланетного общества К. Гэтленда, А. Кунеша и А. Диксона, озаглавленный «Минимальные размеры ракет для искусственных спутников». В докладе был сделан анализ трех трехступенчатых ракет, условно названных «Схема А», «Схема В» и «Схема С». В двух последних «Схемах» третья ступень должна была нести полезную нагрузку весом 100 кг, в «Схеме А» полезная нагрузка не предусматривалась. Стартовый вес ракет был следующим: в «Схеме А»—16800 кг, в «Схеме В»—62400 кг и в «Схеме С»—90900 кг. У четвертой системы («Схема D»),, которая была представлена как «весьма далекая от практического осуществления», стартовый вес был таким же, что и у ракеты в «Схеме С», но полезная нагрузка последней ступени имела вес 220 кг. В 1952—1953 годах число опубликованных статей по беспилотным спутникам непрерывно возрастало. Среди них большого внимания заслуживала статья Вернера фон Брауна, напечатанная в журнале «Кольерс» в июне 1953 года, хотя, к сожалению, при редактировании ее были опущены почти все технические данные.

На четвертом Международном конгрессе по астронавтике, проходившем в 1953 году в Цюрихе, профессор Фред Зингер из университета штата Мериленд заявил, что в США имеются предпосылки для создания искусственного спутника Земли, сокращенно названного «MOUSE»1. В более ранних докладах и статьях рассматривались вопросы, преимущественно касающиеся двигателей, причем основное внимание в них обращалось на то, чтобы создать условия для вывода третьей ступени в качестве беспилотного спутника в безвоздушное пространство.
1 Сокращение от «Minimum Orbital Unmanned Satellite of Earth»— «автоматический искусственный спутник Земли с минимальной орбитой движения». — Прим. ред.
В докладе же Зингера главным был вопрос о полезной нагрузке. В частности, были затронуты проблемы использования ракет-спутников для научных исследований, оборудования их необходимыми приборами, вероятного веса спутников и способов передачи данных на Землю. Гипотетический спутник Зингера представлял собой автономную, имеющую форму шара, приборно-измеригельную систему, которая по достижении заданной высоты отделялась от третьей ступени. Этот шар-спутник весил около 45 кг и стабилизировался вращением. Ось стабилизированного таким образом приборно-измерительного блока должна была постоянно быть направленной к Солнцу; в этом своеобразном «полюсе» спутника предполагалось разместить солнечные батареи для питания радиопередатчика. Орбита спутника должна была проходить через оба географических полюса Земли и находиться на удалении 300 км. Предположительный период обращения спутника составлял 90 минут.

Двухполюсная орбита была выбрана потому, что она проходит над двумя определенными точками, с которых можно принимать передачу данных, а именно над полюсами. Данные измерений приборов должны были записываться на медленно движущейся ленте (5 см/мин). Прием информации со спутника предлагалось осуществлять следующим образом: при выходе «MOUSE» на один из полюсов в воздух поднимается самолет, выполняющий функцию приемной радиотелеметрической станции; по радиосигналу, посланному с самолета, включается передатчик спутника, и все записанное на ленте передается в течение 5 минут на самолет. После этого запись на магнитной ленте стирается, и лента снова оказывается готовой к записи новых данных.

Разговор об искусственном спутнике был поднят Зингером и на третьей конференции по космическим полетам в Гэйденском планетарии (4 мая 1954 года). Он опять утверждал, что его проект—это не проект будущего, что его можно осуществить в настоящее время. Это заявление произвело очень сильное впечатление на представителей прессы и промышленников, присутствовавших на конференции. После выступления доктора Гарри Векслера из Бюро погоды США, который сказал, что искусственный спутник, движущийся по орбите вокруг Земли, будет иметь огромную ценность для метеорологов, так как облегчит им наблюдения и повысит точность краткосрочных и долгосрочных прогнозов, почти ни у кого не осталось сомнений в целесообразности создания спутника.

Снова, как и в 20-е годы, к проблеме космических полетов большой интерес проявили кинопромышленники. Уолтер Дисней организовал серию телевизионных передач. Осенью 1954 года был выпущен фильм под названием «Человек в космосе», который просмотрело около 42 миллионов человек.

В том же году, весной, комитет по космическим полетам Американского ракетного общества разработал предложения по созданию искусственного спутника Земли, которые были представлены на рассмотрение различным ведомствам. К этому времени правительство США и официальные организации (в частности, научно-исследовательское управление ВМС) уже осознали, что для проведения исследований за пределами земной атмосферы необходимы специальные научные приборы. Поэтому реакция была быстрой. 25 июня 1954 года в научно-исследовательском управлении ВМС в Вашингтоне состоялась встреча, на которой присутствовали фон Браун, Фред Дюран, профессор Зингер, профессор Уиппл из Гарварда, капитан 2 ранга Джордж Гувер, Дэвид Янг из фирмы «Аэроджет» и некоторые офицеры управления.

В то время существовало довольно много разработок, связанных с высотными исследованиями, но программа создания спутника еще не значилась в списках. Вопрос заключался в том, можно ли в ближайшее время произвести запуск искусственного спутника Земли крупных размеров на орбиту, находящуюся на удалении 320 км от Земли. Под ближайшим временем подразумевался период в два—три года. Фон Браун заявил, что это можно сделать раньше, и изложил свои соображения относительно использования ракеты «Редстоун» в качестве первой ступени и нескольких связок ракет «Локи»1 в качестве последующих ступеней. По его расчетам скорость последней ступени (одна ракета «Локи») была бы вполне достаточной, чтобы выйти на орбиту вокруг Земли. Основное преимущество этой схемы заключалось в том, что в ней могли быть использованы существующие ракеты.
1 Ракета «Локи» представляла собой доработку незаконченной немецкой ракеты «Тайфун», но не на жидком, а на твердом топливе. Теперь эта ракета исключена из списков боевого оружия и является высотной исследовательской ракетой. — Прим. авт.

Каждый из участников этой встречи выступил затем с предложениями по своей специальности, в результате чего было принято предварительное решение считать проект искусственного спутника профессора Зингера весьма полезным, но осуществимым только после того, как будет закончена какая-либо более простая разработка, предусматривающая запуск легкого спутника.

Вслед за этим представители ВМС посетили Редстоунский арсенал. Через некоторое время по согласованию с начальниками артиллерийско-технического управления Армии и научно-исследовательского управления ВМС офицером проекта «Орбитер» был назначен капитан 2 ранга Гувер.

Еще в ходе предвариюльного обсуждения проекта было принято решение вывести спутник «Орбитер» на орбиту вокруг Земли, осуществив пуск из точки на экваторе с таким расчетом, чтобы плоскость орбиты совпала с плоскостью экватора Земли. Запуск был предварительно назначен на лето 1957 года. Но к этому времени другие организации и ведомства также занялись вопросом о создании искусственного спутника. В Национальный научный центр, занимавшийся планированием Международного геофизического года, попали наряду с другими и предложения Американского ракетного общества. Так как задача Международного геофизического года заключалась во всестороннем исследовании нашей планеты, то было признано, что запуск спутника, дающий возможность получения таких данных, которые не могли быть получены никаким другим путем, должен явиться частью планируемых работ МГГ. Поэтому был разработан и передан на утверждение президенту Эйзенхауэру соответствующий научный проект, и 29 июля 1955 года пресс-секретарь Белого дома Джеймс Хэгерти официально объявил о предстоящем запуске спутника по проекту «Авангард». Проект «Орбитер» был временно отодвинут на второй план.

Как я уже упоминал, на ежегодном собрании Американского ракетного общества были заслушаны доклады, которые вызвали весьма оживленную дискуссию. Авторы одного из докладов—Курт Штелинг, являющийся в настоящее время сотрудником Морской исследовательской лаборатории, а тогда работавший в фирме «Белл Эркрафт», и Раймонд Миссерт из университета штата Айова — предложили произвести запуск облегченного искусственного спутника, предварительно поднятого на большую высоту. Это было ново, так как в то время все думали только о запуске массивной трехступенчатой ракеты с Земли. Конструкция Штелинга и Миссерта была разработана на основе существующих ракет, но так как некоторые из них в то время были еще секретными, то авторы доклада не могли сообщить их название или тип. Конструктивная же схема была следующей: первая ступень представляла собой связку из четырех пороховых ускорителей с тягой по 27 т каждый и с продолжительностью работы 7—8 секунд; эти ускорители должны были весить вместе около 5400 кг при весе полезной нагрузки порядка 680 кг; таким образом, воздушному шару пришлось бы поднять всего 6100 кг. Начальное ускорение должно было составить 19 g, а высота пуска ракеты—24 км. Предполагалось, что к моменту полного выгорания топлива в двигателе первой ступени на высоте около 3.2 км скорость ракеты возрастет до 2377 м/сек.

Вторая ступень представляла собой ракету с жидкостным реактивным двигателем общим весом до 560 кг. Эта ракета несла в качестве полезной нагрузки аппаратуру управления (22 кг) и третью ступень (90 кг). Двигатель ракеты должен был работать в течение 80 секунд, обеспечивая тягу 1800 кг. Начальная перегрузка в момент отделения первой ступени предположительно составляла лишь 2,6 g. Если бы вторая ступень продолжала двигаться по вертикали, то при выключении двигателя она могла бы набрать высоту в 320 км и иметь скорость 4800 м/сек. Но при отклонении второй ступени от вертикали и переходе на круговое движение по орбите она могла оказаться в момент выключения двигателя на высоте всего лишь в 240 км и иметь скорость порядка 5150 м/сек. Третьей ступенью должна была быть пороховая ракета на долгогоряшем топливе с тягой 900 кг и продолжительностью горения 20 секунд, по истечении которых ракета выходила бы на орбиту на высоте 320 км, двигаясь со скоростью 8000 м/сек, то есть на 120 м/сек быстрее, чем это необходимо для данной орбиты. Если же траектория подъема оказалась бы другой, то ракета в этот момент достигла бы высоты всего лишь 240 км, но зато двигалась бы со скоростью 8130 м/сек, которая на 150 м/сек превышает необходимую.

Если произвести запуск этой ракеты из точки, расположенной на уровне моря, то двигатель первой ступени следует выключить на высоте 7000 м. Вторая ступень при этом будет иметь конечную скорость 4100 м/сек (вместо 5150 м/сек), а третья ступень поднимется на высоту 240 км, но ее скорость будет недостаточна для движения по орбите. В качестве воздушного шара предполагалось использовать полиэтиленовый шар «Скайхук» емкостью 85000 м3.

Штелинг и Миссерт сообщили далее, что расчеты ими были сделаны только для вертикального подъема ракеты. При запуске под углом 45° конечная высота была бы, разумеется, меньшей, а конечная скорость более высокой. Возможный прирост скорости не учитывался, он просто должен был увеличить надежность ракеты. Не были приняты в расчет и те положительные факторы, которые возникали в случае запуска ракеты в восточном направлении, то есть в направлении вращения Земли.

В свое время Оберт указывал, что движение ракеты в вертикальном направлении обязательно замедляется под действием силы земного тяготения. Чтобы избежать потери скорости, Оберт советовал осуществлять подъем при очень большом ускорении или же производить горизонтальный запуск. Но оба эти метода неприемлемы вследствие чрезвычайной плотности нижних слоев атмосферы. Поэтому правильным было бы компромиссное решение, заключающееся в запуске ракеты по кривой, направленной на запад. Оберт называл эту кривую «синергической» (рис. 59).
Рис. 59. «Синергическая» кривая Оберта

Примерно через месяц после того, как был предложен запуск ракеты с воздушного шара, несколько авторов предложили заменить воздушный шар реактивным самолетом. Их доводы были простыми, но вескими: несмотря на то, что современные реактивные самолеты могут поднять полную трехступенчатую ракету только на высоту около 12 км вместо необходимой высоты 21 км, сопротивление атмосферы будет здесь не очень большим. В то же время реактивный самолет может сообщить ракете свою собственную скорость порядка 1000 км/час (290 м/сек) и не только нацелить ракету точно на восток, но и осуществить запуск под желаемым углом. Наконец, запуск ракеты с самолета позволяет сократить стоимость эксперимента и сделать его технически более простым.

Весьма вероятно, что в будущем и удастся запустить с помощью реактивного самолета небольшой спутник, оснащенный приборами специального назначения, однако при осуществлении «проекта Авангард» было решено придерживатъся «классической» схемы запуска трехступенчатой ракеты с Земли по вертикальной траектории в восточном направлении.

Наибольший прирост скорости за счет вращения Земли может быть получен там, где линейная скорость вращения Земли наибольшая, то есть на экваторе, где она достигает примерно 1600 км/час. Эта скорость будет еще большей, если стартовую позицию выбрать на вершине горы, расположенной на экваторе; при этом можно будет в значительной мере избежать и сопротивления наиболее плотных слоев атмосферы. Очень подходила бы для этого гора Кения в Восточной Африке, лежащая почти точно на экваторе и имеющая высоту 5194 м, если бы не требование, которое заключается а том, что к востоку от места пуска должно находиться море (это дает возможность первой и второй ступеням упасть в воду, не причиняя никому никакого вреда). В то же время Кению от Индийского океана отделяет большой участок суши, протяженностью около 650 км. Поэтому запуск ракеты со спутником решено было проводить с корабля или с островной базы, например с острова Джонстона в Тихом океане.

Хотя на таком острове, так же как и в районе Кении, нет достаточной промышленной базы, однако доставка туда ракеты и оборудования морем не вызывает трудностей. И все же запуск спутника с острова был делом будущего. Первые же запуски предполагалось производить в континентальной части США, неподалеку от развитых промышленных районов. Требование о расположении стартовых позиций на берегу моря заставило руководителей проекта выбрать для запуска базу ВВС Патрик во Флориде.

8 декабря 1956 года с этой базы в соответствии с программой работ по спутнику был произведен первый пробный запуск. Это пока еще не был носитель спутника; запущена была всего лишь большая ракета «Викинг» № 13, снабженная соответствующими приборами для испытания наземного оборудования. Пуск состоялся в 1 час 3 минуты ночи по местному времени. Ракета «Викинг» поднялась на высоту 200 км и упала в море на расстоянии 290 км от базы.

Необходимо отметить, что трехступенчатые ракеты-носители спутника резко отличаются от обычных ракет. Прежде всего у них нет оперения, так как стабилизация первой ступени осуществляется по тому же принципу, что и в ракетах "Викинг", то есть посредством отклонения оси двигателя, установленного на карданном подвесе. Полная длина ракеты несколько превышает 21 м.

Принципиальная схема ракеты и процесс запуска спутника показаны на рис. 60. После вертикального старта ракета отклоняется в юго-восточном направлении (см. рис.49), поэтому полного использования скорости вращения Земли (на этой широте — 28°28' с. ш.—линейная скорость вращения Земли равна 409 м/сек) не будет. Полный прирост скорости может быть достигнут только при движении ракеты строго на восток.
Рис. 60. Характеристика запуска спутника с помощью ракеты «Авангард» (двигатель первой ступени прекращает работу в точке А)

Отклонение ракеты от вертикали в конце работы двигателя первой ступени составит угол в 45°. В момент выключения двигателя ракета будет находиться на высоте 58 км и на несколько меньшем расстоянии по горизонтали от места старта. Приземлится ракета на расстоянии 370 км от стартовой позиции.

Сразу после отделения первой ступени начинает работать двигатель второй ступени, при этом угол наклона траектории к горизонту непрерывно уменьшается. Все приборы управления находятся во второй ступени ракеты. В головной части третьей ступени под защитой обтекаемого конуса устанавливается сам искусственный спутник. С началом работы двигателя второй ступени ракета поднимается на такую высоту, что всякая необходимость в обтекаемом конусе отпадает и он становится бесполезным грузом. Поэтому вскоре после начала работы двигателя второй ступени носовой конус сбрасывается.

Окончание работы двигателя второй ступени совпадает с подъемом ракеты на высоту порядка 225 км. Далее вторая ступень по инерции поднимается, в зависимости от угла наклона, до высоты 320—480 км. Эта высота достигается ракетой через 10 минут после старта на удалении 1130 км от места пуска, после чего вторая ступень отделяется и падает в океан, пролетев в общей сложности по горизонтали около 2250 км.

В течение некоторого времени после выключения двигателя второй ступени вторая и третья ступени продолжают по инерции набирать высоту, оставаясь соединенными друг с другом. В какой-то определенной точке пассивного подъема ракета начинает вращаться, обеспечивая тем самым стабилизацию третьей ступени. Как только ракета достигает максимальной высоты и выходит на участок траектории, параллельный поверхности Земли, включается двигатель третьей ступени, а вторая ступень отделяется от нее.

После этого третья ступень, двигаясь по касательной к поверхности Земли, вылетает за пределы земной атмосферы. Во время пассивного подъема второй и третьей ступеней, естественно, теряется часть скорости, поэтому третья ступень начинает активный полет со скоростью, составляющей примерно половину орбитальной скорости, то есть не более 3,2 км/сек. Когда в двигателе третьей ступени выгорает все топливо, она развивает скорость, необходимую для движения по орбите; в этот момент спутник и должен быть отделен от третьей ступени. Механизм, разработанный для этой цели, представляет собой сжатую пружину, которая отпускается по сигналу инерционного отметчика времени, рассчитанного на период работы двигателя третьей ступени. Растягиваясь, эта пружина выталкивает сферический спутник из ракеты-носителя. Это отделение происходит со скоростью всего лишь 0,9 м/сек относительно ракеты-носителя, поэтому, окончательно отделившись от спутника, третья ступень (ракета-носитель) также продолжает движение по орбите, становясь вторым «спутником» Земли.

Весьма возможно, что если будет принято и осуществлено предложение Национального консультативного комитета по авиации (НАКА), то при одном пуске удастся получить не два, а целых три спутника. Это может быть сделано за счет установки в ракете-носителе так называемого «подспутника», представляющего собой сложенный пластмассовый воздушный шар, покрытый алюминиевой фольгой и имеющий диаметр основного спутника (50 см). В этом воздушном шаре предполагается установить небольшой газовый капсюль, который наполнит шар после его отделения от ракеты-носителя.

Орбита искусственного спутника Земли должна быть эллиптической. Самой низкой точкой ее (перигей) будет то место, где произойдет выгорание топлива в двигателе третьей ступени. Так как высота перигея и высота при полном выгорании топлива одинаковы, определить расстояние до перигея довольно легко. Самая высокая точка орбиты (апогей) расположена в прямопротивоположном направлении от перигея. По предварительным расчетам по проекту «Авангард» высота спутника в апогее равнялась 1300 км, но в дальнейшем эта цифра была увеличена до 2000 км.

Двигаясь вокруг Земли по орбите, спутник, «подспутник» и третья ступень (ракета-носитель) -совершают полный оборот примерно за 90 минут. За это время сама Земля успевает повернуться на какой-то угол вокруг своей оси. В результате этого проекция спутника на поверхности земного шара приобретает вид сложной кривой, смещающейся при каждом обороте (рис. 61).

Каждый раз, когда спутник подходит к перигею, он встречается с верхними слоями атмосферы. Это вызывает увеличенное лобовое сопротивление, в силу чего кинетическая энергия спутника несколько снижается. Поэтому спутник с каждым новым оборотом вокруг Земли приближается к ней. Причем не только в перигее, но и в апогее (рис. 62). Уменьшение величины орбиты спутника происходит последовательно, и в конце концов орбита приближается по виду к кругу. Однако фактически круг может даже и не возникнуть, так как орбита продолжает сокращаться, превращаясь в спиральную траекторию, по которой спутник входит в более плотные слои атмосферы. Здесь под воздействием аэродинамического нагрева спутник сгорает и испаряется.

Пока еще невозможно определить время существования искусственного спутника Земли. Спутник с высотой перигея порядка 320 км может просуществовать и несколько недель и целый год1. Нельзя также точно сказать, на какой высоте спутник сгорит. По-видимому, это произойдет на высоте свыше 50 км. а может быть, и еще выше. Интенсивность уменьшения орбит третьей ступени (ракеты-носителя) спутника и «подспутника» будет различной, так как они будут иметь различные массы (спутник-до 10кг, а «подспутник» менее 220 г). Логически скорость «подспутника» должна снижаться быстрее, ибо он обладает меньшей кинетической энергией. Третья ступень отличается от спутника не только массой, но и формой, что позволяет, сравнивая их поведение на орбите, получить данные о плотности атмосферы на высоте перигея.
1 Первый советский спутник, запущенный 4 октября 1957 года, имел высоту перигея 227 км и высоту апогея 947 км. Совершив около 1440 оборотов вокруг Земли, он просуществовал 94(92-по весьма приблизительным расчётам-хл.) суток. Продолжительность жизни второго советского спутника (перигей — 225 км, апогей — 1671 км), запущенного 3 ноября 1957 года, составила 163 суток.— Прим. ред.

Рис. 61. Схема движения спутника «Авангард» в проекции на поверхность Земли Вследствие вращения Земли спутник смещается при каждом обороте
на 25° к западу Сплошной линией показан первый, штриховой — второй и пунктирной — третий оборот. Цифрами отмечены основные наблюдательные станции для слежения за спутником:
1—Гавайские острова, 2 — Уайт Сэндз, 3— Флорида, 4 — Кюрасао, 5— Apекипa (Перу), 6—Кордова (Аргентина), 7 — Кадикс (Испания), 8— Блюмфонтейн (Южная Африка), 9— Тегеран, 10—Индия, 11 — Австралия, 12 — Япония

Рис. 62. Сокращение орбиты искусственного спутника Земли
Эксцентриситет орбиты, величина ее сокращения и размеры земной атмосферы для наглядности увеличены. Справа вверху — действительный эксцентристет орбиты с перигеем в 320 км и апогеем в 2560 км от Земли

Все сказанное выше о проекте «Авангард» представляет собой лишь общий план. О подробностях же его осуществления можно говорить гораздо менее определенно, так как, с одной стороны, еще не все решено, а с другой—никто не знает какие неожиданные обстоятельства могут возникнуть. Так, например, не было известно, сколько спутников следует запустить. Национальный комитет США по подготовке и проведению Международного геофизического года (председатель—Джозеф Каплан) просил вначале о запуске 12 спутников; тогда же было объявлено о размещении заказов на 16 полных систем для запуска искусственных спутников. После этого комитет уменьшил свои запросы до 6 спутников, в связи с чем число изготовляемых систем пришлось сократить до 10.

Такая же неопределенность существовала и в отношении продолжительности периодов между запусками спутников. Дело в том, что каждый спутник может дать два ряда различных данных: один—складывающийся из наблюдений за спутником с Земли, а другой — из записей приборов, установленных на нем. И те и другие данные имеют одинаково большое значение, так что запуск спутника даже при отсутствии телеметрических данных все равно будет очень полезным для науки. Так вот, сначала все, кто имел непосредственное отношение к запускам спутников, считали, что интенсивность сокращения орбиты будет довольно большой. Предполагалось, что спутник будет находиться на орбите три—четыре дня, от силы—неделю, а это требовало произвести запуск спутника № 2 после гибели спутника № 1, но не сразу, а после обработки данных, собранных спутником № 1, и соответствующих изменений в приборно-измерительном оборудовании спутника № 2.

В настоящее время, когда стало известно, что спутник может существовать целый год, нет смысла медлить с запуском следующего спутника и дожидаться, пока сгорит первый.

При запуске искусственных спутников Земли может быть получено много интересных данных. Так, наблюдение за интенсивностью приближения спутника к Земле дает новые, более точные сведения о массе нашей планеты, и в особенности о массе экваториальной выпуклости Земли. Благодаря им можно точно установить ширину океанов; произвести триангуляцию1 водных пространств и собрать очень точную информацию о плотности атмосферы на различных высотах. Последнее поможет нам решить задачу возвращения ракет из космоса в атмосферу.
1 Метод измерения земной поверхности путем построения сети треугольников. — Прим. ред.

В результате наблюдений за спутником можно установить количество космической пыли, рассеянной в пространстве, непосредственно примыкающем к верхним слоям атмосферы. Эта проблема, несомненно, имеет очень большое значение. Частицы космической пыли настолько малы, что не могут проникнуть в обшивку спутника, сделанную из магниевого сплава, даже если ее толщина не превышает 0,7 мм. Но, сталкиваясь со спутником, эти частицы выбивают в его обшивке миниатюрные воронки, и зеркальная полировка обшивки тускнеет. Этот факт используется для подсчета числа частиц космической пыли, встретившихся со спутником.

Степень потускнения обшивки спутника определяется визуально по интенсивности отраженного света. В некоторых спутниках с той же целью используется телеметрическая система передачи данных. Эта система состоит из датчика, представляющего собой короткую полоску металла с высоким электрическим сопротивлением, которая укрепляется на обшивке спутника. Под воздействием космической пыли на полоске возникает точечная коррозия, что приводит к увеличению ее электрического сопротивления. Это изменение коэффициента сопротивления превращается в соответствующий радиосигнал и передается на Землю.

Спутник может сообщить еще целый ряд интересных данных, например, изменение температуры обшивки во время его вхождения в тень Земли, интенсивность радиации и напряженность магнитного поля Земли.

Поскольку восточное побережье США и западное побережье Южной Америки расположены, грубо говоря, на одном меридиане, этот последний предполагалось сделать «меридианом слежения». Для улучшения качества приема слабых радиосигналов спутника пункты слежения оборудовались крупногабаритными наземными антеннами. Радиослежение за спутником возлагалось на Морскую исследовательскую лабораторию под руководством доктора Хэйгена. Задача визуального наблюдения была поручена астрофизической обсерватории Смитсонианского института во главе с доктором Уипплом. В помощь профессионалам были мобилизованы астрономы-любители.

Предполагалось, что спутник будет виден за час до восхода и через час после захода солнца, но имелись опасения, что он будет недостаточно блестящ, чтобы его можно было разглядеть на небе невооруженным глазом.

Предназначавшаяся для запуска спутника ракета «Авангард» должна была состоять из трех ступеней. В первой ступени ракеты, построенной фирмой «Мартин Эркрафт Компани», был использован двигатель Х-405 фирмы «Дженерал Электрик», развивающий на уровне моря тягу 8200 кг в течение 150 секунд. Подача топлива осуществляется в нем обычным турбонасосным агрегатом, а в качестве окислителя применяется жидкий кислород. Топливо в ходе разработки несколько раз подвергалось изменениям: сначала было решено использовать бензин с добавкой 5% спирта; затем было предложено ракетное топливо JP-4, однако разброс характеристик горения и тяги при этом топливе был почти таким же, как и при смеси бензин + спирт. После этого было применено топливо RP-1 (стандартный керосин фирмы «Мобайлойл компани»), которое в конечном счете пришлось заменить тяжелым топливом UMF-1 фирмы «Шелл-ойл».

Вторая ступень с двигателем была создана фирмой «Аэроджет Дженерал». Окислителем в ней служила азотная кислота, а топливом — диметилгидразин. Третья ступень работала на твердом топливе.

Сейчас пока еще нельзя сказать, к чему приведет осуществление проекта «Авангард». Но есть основания предполагать, что это будет попытка разработки постоянного спутника. Самый легкий путь к решению этой задачи заключается в том, чтобы запустить спутник с такой высотой перигея, которая позволила бы полностью освободиться от лобового сопротивления движению. Подобный спутник будет иметь постоянную, но все еще эллиптическую орбиту. Можно добиться этого и другим путем, если сохранить в двигателе третьей ступени часть топлива до того момента, когда она в первый раз достигнет апогея. Использовав здесь это топливо, можно сделать апогей перигеем новой орбиты.

После запусков по проекту «Авангард» можно создать постоянный спутник, обеспечивающий максимальную наблюдаемость с Земли даже невооруженным глазом. Его диаметр должен составить в этом случае 4,5—6 м, причем он может быть выполнен в виде простого воздушного шара из неупругой пластмассы белого или светло-желтого цвета. Этот шар можно уложить в последней ступени ракеты, а после отделения — автоматически надуть, использовав для этого небольшой газовый патрон. Вероятно, вполне достаточным для этого будет внутреннее давление порядка 18 г/см2. Если такой шар будет пробит метеоритом, он не взорвется, как резиновый воздушный шар; газ, конечно, улетучится, но шар не потеряет свою форму. Наконец, можно установить на ракете баллон со сжатым пенопластом1 и в определенной точке на орбите взорвать его с помощью хронирующего устройства. Образовавшийся из пенопласта громадный «спутник» будет очень хорошо наблюдаем с Земли и весьма полезен для геодезических измерений, а также для целей навигации и самонаведения ракет и снарядов.
1 Пенистый пластический, материал—искусственный материал ячеистой структуры, характерный очень низким объемным весом (0,01г/см2) и высокой удельной прочностью. Приготавливается из искусственной смолы, в которую вводятся вещества, выделяющие при нагревании газы, которые создают в массе смолы замкнутые поры. Применяется в авиационной промышленности, судостроении, для изготовления спасательного инвентаря.—Прим. ред.

Искусственные спутники Земли можно классифицировать по весу, от которого будет непосредственно зависеть и их назначение. Спутник весом 900 г, как правило, является совершенно бесполезным. Спутник весом 9 кг («Авангард») уже может быть оборудован некоторыми измерительными приборами и наблюдаем с Земли. Может быть построен и спутник весом 90 кг, который позволяет выполнить весьма широкий круг задач. Имея хороший источник питания—небольшой атомный реактор,—такой спутник может нести телевизионную камеру, передающую картину Земли на землю. Подобные наблюдения имеют огромное значение для метеорологов, знания которых о том, что происходит в атмосфере, ограничиваются сейчас только немногими процессами, происходящими главным образом вблизи земной поверхности.
Рис.63. Угол и сектор наблюдения с искусственного спутника Земли
H- высота над уровнем моря, S-предел видимости (линия горизонта), А - видимый шаровой сегмент

Даже находясь на сравнительно малой высоте, спутник позволяет наблюдать обширные участки земной поверхности. По мере увеличения высоты возрастают и размеры видимого шарового сегмента. Наблюдатель на борту спутника «Авангард», находящегося в апогее, смог бы, например, увидеть около 1/3 поверхности Земли (рис. 63). Как указано в таблице, приведенной ниже, наибольший диаметр видимого шарового сегмента достигается при высоте наблюдения 6400 км. Следовательно, для того чтобы наблюдатель мог увидеть сразу до 40% поверхности Земли, спутник с телевизионной камерой должен двигаться вокруг Земли на высоте от 4000 до 6400 км. Применение цветного телевидения откроет большие возможности перед метеорологами, которые при определении движения разнотемпературных масс воздуха руководствуются главным образом еле различимыми оттенками голубого и белого цвета.


Угол обзора в, ° Геоцентрический угол ф, ° Высота наблюдения Н, км Дальность видимого горизонта, км Дуга обзора А, км Видимая часть земной поверхности, %
160 20 92 1130 1120 8
140 40 412 2310 2240 17
120 60 1000 3720 3200 25
100 80 1950 5380 4500 32
80 100 3600 7600 5630 38
60 120 6400 11 100 6780 43
401401235017700790047
201603050036500900049
171633600043000935049,5

В дальнейшем предполагается создание большого спутника, который будет весить около 1 т и иметь на борту манекен-робот с телевизионными камерами вместо глаз и системой автоматического регулирования с обратной связью. Используя телеуправление, можно заставить робот проделывать всё, что может делать человек, в условиях космического полета. Кроме того, робот можно будет периодически включать и выключать на определенное время.

Подобный робот уже создан. Им управляет оператор в специальной одежде (с укрепленными на ней датчиками), закрывающей целиком руки и плечи. Получая от датчиков определенные радиосигналы, сервомоторы робота точно имитируют все движения человека в этой одежде. Робот хорош тем, что может работать в любых условиях: в отравленной атмосфере, в опасных местах, в огне и, конечно, в космическом пространстве.

Очевидно, после спутника, весящего 1 т, будет создан еще более крупный спутник весом до 10 т. Это уже будет по сути дела не спутник, а обитаемая космическая станция.

Еще до создания обитаемой космической станции или спутника с телевизионной камерой может появиться непилотируемая ракета, которая будет запущена на Луну (так называемый «лунник») 1. Когда в начале развития ракетной техники заходил разговор о запуске ракеты на Луну, то даже самые большие скептики наполовину соглашались с осуществимостью подобного проекта. В отличие от этого проект обитаемой космической станции всегда вызывал сильное недоверие.

При тех топливах, которые используются в ракетах-носителях спутника «Авангард», космическая ракета для запуска на Луну должна быть четырехступенчатой. Управление ею будет осуществляться сравнительно просто, в основном путем предупреждения или корректирования любых возможных отклонений от вертикальной траектории. Когда-то, еще до изобретения телеметрических приборов, профессор Годдард предлагал поместить в головную часть космической ракеты, посылаемой на Луну, заряд ярко горящего пороха, вспышка которого сигнализировала бы о прибытии туда ракеты. Позднее профессор Оберт пришел к выводу, что Годдард в своих расчетах уменьшил количество пороха, необходимого для получения вспышки нужной яркости.
1 12 сентября 1959 года в Советском Союзе была запущена вторая космическая ракета, последняя ступень которой 14 сентября в 00 час. 02 мин. 24 сек. по московскому времени достигла поверхности Луны. Контейнер с научной аппаратурой опустился восточнее моря Ясности вблизи кратеров Аристил, Архимед и Автолик. При полете ракеты к Луне производились многочисленные и разнообразные исследования, позволившие значительно обогатить наши знания о Луне.— Прим. ред.

Впоследствии эта идея получила новую форму: было предложено заменить вспышку пороха постоянной «отметкой» в точке прилунения. Это могло быть достигнуто путем разбрасывания белого порошка (толченое стекло, алебастр или металлический натрий, который при ударе испаряется, а затем оседает на довольно большой площади). Предполагалось, что довольно темная поверхность Луны позволит ясно различить такую отметку.

Со временем, когда был накоплен большой практический опыт по запуску высотных ракет и получены разнообразные научные данные, интерес к «луннику» заметно ослаб. По сути дела этот дорогостоящий эксперимент ничего не давал, кроме престижа и не имеющей научного значения отметки на Луне.

Однако совсем недавно во взглядах на запуск «лунника» произошел крутой поворот. На конференции в институте Франклина, посвященной проблеме искусственных спутников Земли, научный сотрудник фирмы «Рэнд Корпорейшн» Клемент прочел лекцию о «луннике», в которой утверждал, что трехступенчатая ракета, имеющая стартовый вес около 450 000 кг и длину 53 м, может доставить на Луну полезный груз весом 45 кг. Примерно такое же заявление было сделано Штелингом и Фостером на Международном конгрессе по астронавтике в Риме в 1956 году.

Штелинг и Фостер предлагали использовать для этого трехступенчатую ракету на твердом топливе, запускавшуюся с воздушного шара «Скайхук» емкостью 112 000 м3 на высоте 21 000 м. Первая ступень ракеты по проекту представляла собой связку из четырех двигателей весом 11 340 кг с общей тягой примерно 107 000 кг и продолжительностью работы до 20 секунд. Вес второй и третьей ступеней составлял 713 кг. Предполагалось, что выгорание топлива первой ступени (связки) произойдет на высоте 55 000 м. Во второй ступени, имеющей один двигатель с тягой 6350 кг, выгорание топлива должно было иметь место на высоте 85 000 м, а двигатель третьей ступени (тяга 500 кг) прекращал работу на высоте 107 000 м, когда скорость ракеты составляла несколько более 12 000 м/сек. Ниже даны значения скоростей «лунника» и вероятные потери скорости (м/сек):

Конечная скорость ракеты12 040
Скорость, необходимая для выхода из
сферы притяжения Земли
11 185
Потеря скорости вследствие лобового сопротивления
(первая ступень) атмосферы
121
Потеря скорости на преодоление силы тяжести
при подъеме во время работы двигателей:
 

первой ступени

196

второй ступени

196

третьей ступени

98
Общая потеря скорости611
Излишек скорости 244
Фактическая скорость последней ступени11 796

Последняя ступень должна нести полезную нагрузку весом 1,8 кг, достаточную для того, чтобы оставить на поверхности Луны отметку. Телеметрия во время движения ракеты к Луне была признана излишней.

Космическая ракета, посланная на Луну, поможет ученым решить одну проблему, которая в настоящее время имеет известный интерес. Большие темные «моря» на Луне представляются нам удивительно гладкими. Большинство астрономов всегда считало их потоками затвердевшей лавы, очень удобными для использования в качестве посадочных площадок. Но недавно англичанин Томас Гоулд высказал предположение, что эти гладкие «моря» являются гигантскими чашеобразными углублениями, наполненными пылью. На поверхности Луны действительно много пыли, что частично объясняется постоянной бомбардировкой ее крупными, средними, малыми и мельчайшими метеоритами, а частично — воздействием космических лучей. Однако все считают, что глубина этого слоя пыли не превышает нескольких дюймов. Если же верить Гоулду, то твердый «грунт» лунных «морей» может оказаться скрытым под слоем пыли толщиной более километра.

Если космическая ракета, запущенная в сторону Луны, пройдет мимо цели на сравнительно небольшом расстоянии от нее (менее 1600 км),то случится вот что: поле тяготения Луны притянет ракету, заставив ее некоторое время двигаться вокруг центра Луны по гиперболической орбите, однако вследствие большой скорости космической ракеты она не сможет стать спутником Луны, а совершит поворот вокруг Луны под острым углом и выйдет из сферы ее притяжения по траектории, являющейся ветвью гиперболы, направленной в общем в сторону Земли. Конечно, обратно на Землю эта ракета не попадет, хотя и пройдет от нее на небольшом расстоянии, но зато наблюдение за траекторией полета ракеты позволит с большой точностью вычислить массу Луны и подтвердить выдвинутую в прошлом гипотезу о наличии расхождения в положении геометрического центра и центра тяжести Луны. Если же космическая ракета будет достаточно большой, чтобы иметь на борту телевизионную камеру, мы сможем получить изображение невидимого с Земли полушария Луны 1.
1 Выполнить эту величайшую научную задачу позволила третья космическая ракета, запущенная в Советском Союзе 4 октября 1959 года. Последняя ступень ракеты (сухой вес 1553 кг) имела на борту автоматическую межпланетную станцию весом 278,5 кг, оборудованную новейшей измерительной аппаратурой, и в том числе фототелевизионной установкой. Станция совершила облет вокруг Луны, что дало возможность 7 октября 1959 года произвести фотографирование невидимой с Земли части Луны и передачу изображения на Землю.— Прим. ред.

Как отмечалось выше, спутник весом 10 т представлял бы собой уже целую обитаемую космическую станцию. Эта станция может иметь вид крылатой третьей ступени очень большой ракеты, и в этом случае запуск ее будет весьма сходен с запуском спутников по проекту «Авангард». Так же, как и они, космическая станция выводилась бы на орбиту и оставалась на ней в течение нескольких оборотов вокруг Земли, то есть около 6 или 12 часов, а может быть, и в продолжение целых суток. Затем пилот мог бы замедлить ее движение, включив тормозной ракетный двигатель, работающий на резервном топливе, в результате чего станция-ракета пошла бы на снижение, вошла в атмосферу по касательной и погасила бы излишнюю скорость, планируя вокруг нашей планеты. Несмотря на сильный нагрев ее поверхности, станция-ракета, по-видимому, вполне сможет совершить посадку, так как скорость при этом будет даже несколько ниже скорости посадки современных пассажирских лайнеров.

Появление пилота на космическом корабле сразу меняет всю картину. Целый ряд вопросов при участии пилота решается легче, так как человеческий разум помогает точнее разобраться в обстановке, чем это может сделать автоматическая аппаратура управления. К тому же человек весит значительно меньше сложных приборов системы управления. Если при возвращении в атмосферу температура корабля становится слишком высокой, пилот может снова вывести свой корабль за пределы атмосферы или попытаться уйти в теневой конус Земли с тем, чтобы быстрее излучить накопленное кораблем тепло. Короче говоря, присутствие пилота на космическом корабле дает очень много преимуществ. Но в то же время человек, находясь на космическом корабле, подвержен воздействию многих отрицательных факторов, для ослабления которого необходимо вносить изменения в конструкцию корабля.

Может ли человеческий организм выдержать те нагрузки, которые он испытывает при выходе космического корабля на орбиту и отклонении от нее?

Эта проблема в течение ряда лет усиленно изучалась отделом астромедицины министерства авиации на базе ВВС Рэндольф; возглавлял исследования доктор Губерт Штругольд—один из основоположников немецкой авиационной медицины.

Рассмотрим основные проблемы полета человека в космос. Прежде всего пилот должен выдержать значительные перегрузки при взлете ракеты. Затем, в течение всего полета, пока не начнется торможение, он будет находиться в состоянии невесомости, то есть при нулевом g. В космическом пространстве он и его корабль встретятся с опасностью воздействия космических лучей и столкновения с метеоритами. Кроме того, полет в космос связан с резкими температурными колебаниями и целым рядом других, менее существенных факторов.

Легче всего исследовать проблему влияния на человека больших перегрузок. Еще Оберт в одной из первых опубликованных им работ предлагал изучить сопротивляемость человеческого организма высоким перегрузкам с помощью большой центрифуги. Этот метод позволил тщательно исследовать и решить проблему перегрузок. Были составлены специальные таблицы, где значениям времени, необходимого для разгона ракеты до второй космической скорости (11,2 км/сек), соответствовали определенные значения возникающих при этом перегрузок. Из приведенной ниже таблицы становится ясно, что когда скорость нарастает медленно, то время для достижения второй космической скорости увеличивается, а перегрузка уменьшается, и наоборот.

Ускорение, g Время, необходимое
для достижения второй
космической скорости
3 9 мин 31 сек
4 6 мин 21 сек
5 4 мин 45 сек
6 3 мин 48 сек
7 3 мин 10 сек
8 2 мин 40 сек
9 2 мин 20 сек
10 2 мин 06 сек

Эта таблица неизбежно порождает вопрос, что будет легче для человека: выдержать небольшую перегрузку в течение долгого времени или перенести непродолжительную, но очень большую нагрузку?

Известно, что мелкие животные могут выдерживать большие ускорения, с человеком же дело обстоит хуже. Самыми высокими ускорениями, которые испытывает человек, являются ускорения, возникающие при крутых виражах и выводе самолета из пикирования на большой скорости. Еще в годы войны было установлено, что пилот с трудом переносит кратковременные ускорения порядка 4 g, а при 6 g теряет сознание. Ни один пилот не выдерживал перегрузки в 4 g продолжительностью в несколько минут.

Испытаниям на центрифуге подвергались только добровольцы. Чтобы исключить побочные влияния быстрого вращения, испытания проводились в темноте со слабо освещенным центром вращения, для того чтобы человек мог фиксировать на нем свой взгляд. В качестве дополнительной меры предосторожности кабина тренажера оборудовалась выключателем, дававшим испытуемому возможность в любой момент прекратить тест. Первые тесты с ускорением в 3 g подтвердили правильность теоретических предположений. Никто не пострадал, но все выражали сильное недовольство: испытуемые почему-то теряли всякое представление о времени. Затем были проведены тесты с перегрузками в 4 g. Ко всеобщему удивлению, испытуемые переносили их гораздо легче. Тогда людей подвергли тестам на 5 g, 6 g и так далее, вплоть до 10 g. Это было очень трудное испытание, однако люди выдерживали его, не теряя сознания. Один из пилотов подвергся даже невероятному испытанию—на перегрузку в 17 g в течение целой минуты и перенес его сравнительно хорошо.

Причина этого непонятного на первый взгляд явления была очень скоро найдена. Дело в том, что в самолете-истребителе летчик сидит прямо. Когда самолет выходит из пикирования, ускорение, которое испытывает пилот, направлено вдоль позвоночного столба и действует сверху вниз, вызывая усиленный отлив крови от головного мозга и связанную с этим потерю сознания. В центрифуге, так же как и в космическом корабле, ускорение направлено почти под прямым углом к позвоночному столбу человека, поэтому при испытаниях ощущается только большое напряжение, но распределение крови в организме существенно не меняется.

Условия этих испытаний были значительно более тяжелыми , чем условия реального космического полета. Ускорение сообщалось непрерывно в течение всего времени , необходимого для разгона ракеты до второй космической скорости (11,2 км/сек), хотя в действительности было бы достаточно разгона до 8 км/сек. При испытаниях ускорение было постоянным, но в условиях реального полета оно сначала будет довольно низким и только перед окончанием работы двигателей каждой ступени достигнет максимальных значений. На рис. 64 показан вычисленный фон Брауном график ускорений трехступенчатого космического корабля, способного выйти на орбиту спутника Земли. Проведенные по этому графику испытания показали, что человек переносит их довольно легко.
Рис. 64. Ускорения, возникающие при запуске трехступенчатой космической ракеты-корабля. Максимальное ускорение в 8—9 g наблюдается в течение очень короткого времени

В действительности человек, который подвергнется воздействию ускорений согласно графику фон Брауна, будет двигаться со скоростью 8 км/сек, но при этом он будет невесом. Это положение всегда очень трудно представить себе, и, чтобы объяснить его, воспользуемся более наглядным примером. Предположим, что прямо перед нами установлен яркий источник света. Если смотреть на него, постепенно увеличивая расстояние, он будет казаться все слабее и слабее, но не исчезнет совсем. Когда он будет настолько слаб, что мы не сможем его различать невооруженным глазом, нам помогут оптические приборы. В конце концов расстояние увеличится настолько, что этот источник потеряет для нас всякое значение. То же самое происходит и с телом, которое удаляется от небесного тела, имеющего относительно мощную сферу притяжения. Для Земли расстояние, на котором ее притяжение не будет иметь никакого значения, составит примерно 260 000 км.

Почему же тогда на расстоянии гораздо меньшем указанного человек делается невесомым? Ведь на него еще продолжает оказывать действие сила земного тяготения. Причина этого заключается в том, что у человека нет органов ощущения скорости и силы тяжести. То, что чувствуют ноги летчика, стоящего на бетонной взлетно-посадочной полосе, это не сила тяжести, а лишь сопротивление ей. Бетонированная полоса и грунт под ней мешают летчику двигаться в направлении действия силы тяжести. Вот если у него под ногами внезапно откроется глубокая шахта, он под действием силы тяжести упадет в нее и разобьется. Но пока не достигнет дна, он не почувствует никакого притяжения. Он просто потеряет ощущение собственного веса, ибо ничто не препятствует его падению. Падающий летчик в этом примере испытывает, как принято говорить, «нулевое g» (состояние невесомости).

Это же происходит и с человеком, летящим на космическом корабле. Отсутствие ощущения веса можно было бы назвать свободным падением, но слово «падение» не совсем уместно, так как космический корабль может двигаться в любом направлении. Поэтому вместо «свободного падения» пользуются безотносительным выражением «нулевое g».

Вряд ли правы те, кто утверждают, что ощущение, появляющееся у человека при нулевом g, будет напоминать никогда не кончающееся падение и что по меньшей мере сомнительно, сможет ли человек когда-нибудь приспособиться к нему.

Я считаю, что это просто результат неправильного словоупотребления, когда в течение долгого времени состояние невесомости обозначалось термином «свободное падение». На самом же деле ощущение нулевого g и чувство, испытываемое при падении, не имеют друг с другом ничего общего.

К сожалению, подвергнуть человека испытанию на реакцию при нулевом g гораздо труднее, чем при ускорении в несколько g. К тому же физиологи, например, говорят, что нулевое g вообще не влияет на функции человеческого организма. Известно, что лишь небольшой процент работы сердца затрачивается на преодоление силы тяжести крови; большая же часть ее расходуется на преодоление трения в кровеносных сосудах. Равным образом и дыхание, глотание и освобождение от мочи и кала осуществляются не за счет силы тяжести, а благодаря сокращению наших мускулов.

Недавно был произведен эксперимент по исследованию влияния нулевого g на животных. Две обезьяны и две белые мыши были помещены в специально сконструированной кабине на ракете «Аэроби». Мыши находились в медленно вращающемся прозрачном пластмассовом барабане, где в течение всего полета их положение фиксировалось кинокамерой. Обезьяны были привязаны ремнями к лежакам из губчатой резины. Регистрация деятельности сердца обезьян, их дыхания и прочих функций производилась с помощью специальных приборов.

После того как ракета набрала максимальную высоту, кабина отделилась от нее и стала падать. В этот момент, как показала кинопленка, мыши пришли в замешательство. Обезьяны были перед стартом анестезированы (усыплены), но их электрокардиограммы, как и кардиограммы мышей, почти не отличались от контрольных, полученных за день, до полета и через день после него. На определенной высоте раскрылся парашют кабины, и она благополучно приземлилась. Как только обезьян выпустили из нее, одна быстро и с аппетитом съела предложенный ей банан.

Для этих испытаний были специально выбраны молодые; обезьяны, но не потому, что молодые животные обладают большей выносливостью. Если бы экспериментаторы взяли старых обезьян и одна из них околела по прошествии нескольких месяцев, то возникли бы бесконечные споры о том, является ли это следствием данного эксперимента или нет. В дальнейшем эти обезьяны в течение ряда лет демонстрировались в зоологическом саду в Вашингтоне1 .
1На международной конференции в Париже в 1956 году начальник советского Научно-исследовательского института авиационной медицины А. Покровский сообщил об опытах с собаками, которые поднимались на высотных ракетах на высоту около 100 км. Было испытано девять собак, причем три из них — по два раза. Каждая собака находилась в отдельной герметически закрытой кабине с установленным в ней киноаппаратом. Весь эксперимент продолжался около трех часов. При другом испытании собаки были заключены в особый костюм астронавта, который был, по-видимому, усилен рамой. Одна из собак была выброшена на высоте 90 км, другая снизилась вместе с ракетой до 40 км.а затем была выброшена с парашютом, который раскрылся, только на высоте 3, 5 км.Никаких изменений в жизненных функциях и поведении собак обнаружено не было. - Прим. авт.

В то время, когда сообщалось об опыте с обезьянами, братья Хаберы, сотрудники отдела астромедицины профессора Штругольда, сообщили на собрании Ассоциации специалистов авиационной медицины, что нашли возможность создать для человека условия невесомости на очень короткий отрезок времени. Для этого они предлагали использовать момент выхода скоростного самолета из пикирования, когда самолет движется по кривой, очень похожей на параболу. Пока самолет находится на участке параболы, который на рис. 65 изображен в центре, пилот должен испытывать состояние невесомости (нулевое g).

Первый эксперимент такого рода был проведен летчиком Чарльзом Егером. По словам Егера, он испытывал в момент выхода из пикирования такое чувство, будто его посадили на большой шар, вращающийся одновременно в нескольких направлениях. Он заметил, что карандаш, лежавший на приборной доске, поднялся и висел в воздухе в течение всего маневра. Егер прервал опыт примерно через 13 секунд, увеличив подачу горючего в двигатель самолета. Рассказы других летчиков, повторивших опыт Егера, носили еще более неопределенный характер. Однако отдел астромедицины продолжил эти эксперименты, подытоженные впоследствии на конгрессе в Риме сотрудником профессора Штругольда доктором Гератеволем.
Рис. 65. Параболический полет

В докладе Гератеволя, в частности, приводились следующие данные.

Состояние невесомости было достигнуто при полете на самолете «Локхид» Т-33 с реактивным двигателем J-33A-35, развивающим при движении по параболической кривой тягу 2080 кг.Были проведены два летных маневра: при первом удалось создать перегрузку в 3 g, а затем достичь нулевого g в течение 25-30 секунд; при втором маневре состояние невесомости продолжалось 10-15 секунд без заметного увеличения ускорения до и после этого периода. В общем все доклады, полученные от лиц, прошедших испытания, можно классифицировать следующим образом:

1. Ощущение комфорта и удовольствия отмечено большинством испытуемых.

2. Отдельные лица, подвергнутые испытаниям, сообщали о каких-то неопределенных ощущениях движения - вроде падения, плавания, вращения или парения в воздухе.

3. Небольшая группа испытуемых сообщила, что чувствовала себя неважно и испытывала симптомы головокружения и тошноты, характерные для болезненного состояния, вызываемого движением .1
1См. «Astronautica Acta», vol. II., fasc, 4, 1956.

Отсюда, очевидно, можно сделать заключение, что у разных индивидуумов чувствительность и приспособляемость к перегрузкам и состоянию невесомости колеблется в очень широких пределах. При нулевом g один индивидуум будет, вероятно, страдать от отсутствия силового рычага, в то время как другому такое положение будет очень приятно. Короче говоря, человеческий организм оказался значительно лучше приспособленным к условиям космического полета, чем предполагали несколько десятков лет тому назад самые большие оптимисты.

Вернемся теперь к проблеме, связанной с опасностью воздействия на человека космических лучей и метеоритов.

До того как ракеты Ван Аллена, запускаемые с воздушных шаров, не произвели на большой высоте измерений космической радиации, о космических лучах было известно очень мало. С помощью этих ракет удалось установить приблизительное число частиц, с которыми ракета или спутник могут встретиться на своем пути. Но было неизвестно, какое действие окажут космические лучи на живой организм. С этой целью вот уже несколько лет воздушные шары «Скайхук» парят на максимально возможной для них высоте, подвергая небольших млекопитающих, заключенных в их гондолах, воздействию космических лучей. Результаты этих опытов полностью опровергают утверждения об исключительной вредности космических лучей. На большую часть мелких грызунов однократное многочасовое пребывание у границ космического пространства не оказало никакого заметного влияния. Лишь у нескольких обнаружены небольшие участки седой шерсти, появившиеся, по-видимому, в результате поражения сильным первичным космическим излучением. Многое, разумеется, еще остается невыясненным, однако сейчас уже почти никто не боится подвергнуться воздействию космических лучей в течение нескольких дней.

Метеорная опасность значительно серьезнее, чем опасность космических лучей, но она также была явно преувеличена. Обычно широкая публика имеет представление о метеоритах только по тем образцам, которые демонстрируются в планетариях и музеях. Естественно, это «лучшие» образцы и весят они немало: от сотни килограммов до нескольких десятков тонн, Поэтому не приходится удивляться, когда непосвященный человек, полагающий, что каждый метеорит весит по крайней мере около 2 кг, спрашивает: «А что будет с экипажем, если в корабль попадет метеорит?»

Такому человеку всегда приходится объяснять, что вопрос о метеорной опасности заключаегся не столько в том, что будет с экипажем при попадании в корабль крупных метеоритов, сколько в том, будут ли такие попадания вообще иметь место. Еще в самом начале исследования этой проблемы было установлено, что вероятность такого столкновения крайне незначительна. Например, в 1866 году наблюдалось падение так называемых «Леонидов» - метеоритов, пересекавших орбиту Земли довольно плотным потоком. Когда же плотность этого потока была тщательно измерена, то оказалось, что даже самые плотные его части были сравнительно «пустыми». Так, минимальное расстояние между двумя частицами составляло более 110 км.

В 1928 году директор гамбургской обсерватории профессор Графф указал, например, что даже в очень плотных метеорных потоках на 100 км3 пространства вряд ли найдется хотя бы одна частица весом около 1 кг. Что же касается крупных метеоритов, то опасность столкновения с ними сводится к нулю.

Первые близкие к истинным цифры, характеризующие интенсивность падения метеоритов на Землю, были даны в 1941 году профессором Уотсоном в книге «Между планетами». В 1946 году ученый Гриммингер провел на основе цифр Уотсона прекрасное теоретическое исследование вероятности столкновения метеоритов с телом, находящимся вблизи Земли.

По данным Уотсона, на Землю ежедневно падает 28 000 метеоритов диаметром 12 мм и сравнительно небольшое количество более крупных метеоритов. Если же принять для среднего метеорита диаметр 1, 1 мм, то общее число их увеличится до 75 миллионов. Метеорит такого размера астрономы называют метеоритом 5-й величины; его можно видеть ночью невооруженным глазом. Чем меньше метеориты, тем о ни, конечно, многочисленнее; так, общее число падающих на Землю метеоритов 30-й величины (диаметр - 0, 0005 мм)ежедневно составляет 75.1016. Песчинки очень мелкого песка могут быть отнесены по размерам к 15-й величине, а мельчайшие частицы самой лучшей глины - к 25-й. 30-ю величину метеоритов принято считать пределом по очень простой причине: любая меньшая частица будет выталкиваться из солнечной системы под давлением солнечных лучей. Конечно, размеры спутника не идут ни в какое сравнение с размерами Земли, которая вместе с атмосферой представляет собою шар диаметром около 12 800 км и имеет очень большое гравитационное поле. Даже такой спутник, который весил бы 10 т, все равно оставался бы «невидимым» в сравнении с Землей, а его теоретическое гравитационное поле практически не имело бы ровно никакого значения.

Для своих расчетов Гриммингер условно принял площадь поверхности спутника равной 92 м2, что в действительности намного превышает площадь рассматриваемого корабля. Вычисления показали, что тело, имеющее поверхность площадью в 92 м2, каждые 3, 5 часа будет сталкиваться с метеоритом 20-й величины. Если учесть все метеориты этой и еще большей величины, то можно утверждать, что столкновения будут наблюдаться в среднем через каждые 2 часа.

Диаметр метеорита 20-й величины равен 0, 01 мм, поэтому практически никакого влияния на тело он оказать не сможет. Метеорит 10-й величины имеет диаметр 0, 25 мм, но частота встреч с такими метеоритами ничтожно мала: одно столкновение за 33 800 часов. Учитывая все метеориты этой и большей величины, можно сказать, что одно столкновение будет отмечаться в среднем каждые 20 400 часов (2 года и 4 месяца). Одно попадание метеорита 8-й величины (0, 5 мм в диаметре) будет происходить через каждые 15, а нулевой величины (диаметром около 5 мм) -через 23 800 лет.

Несомненно, что космический корабль, который выйдет на временную орбиту вокруг Земли и будет двигаться по ней, скажем, в течение 24 часов, встретится с метеоритными частицами, имеющими размеры самой мелкой пыли. Будет ли при этом обшивка корабля пробита ими, зависит от ее прочности и толщины. Так, например, известно, что лист дюралюминия толщиной 1 мм сможет быть пробит любым метеоритом 12-й или большей величины. Но если обшивка корабля будет изготовлена из стали толщиной 3 мм, то, для того чтобы пробить ее, потребуется метеорит 5-й величины (диаметр 1, 12 мм).Сталь толщиной 12, 7 мм пробьет только метеорит нулевой величины (диаметром 5, 2 мм).
Однако нет никакой необходимости делать обшивку космических ракет столь тяжелой. Профессор Уиппл в своей лекции в Американском астрономическом обществе в сентябре 1946 года предложил следующее оригинальное решение этой задачи.

«Когда метеорит сталкивается с листом металла одинаковой с ним толщины, происходит взрыв, при котором метеорит и соответствующее количество металла обшивки испаряются и ионизируются. Это приводит к необходимости создания своеобразного «метеорного амортизатора» из листового металла толщиной в 1 мм.Такой «амортизатор» ослабляет пробивную силу метеорита в несколько раз большего, чем метеорит 8-й величины».

До сих пор мы говорили о десятитонном спутнике, который представляет собой космический корабль, способный на некоторое время выйти на орбиту вокруг Земли. Создание же десятитонного корабля-спутника явится вступлением к запуску в космос стотонного спутника, или обитаемой межпланетной станции.

далее

к началу
назад
на восток! - Хл